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Stability of viscous flow past a circular cylinder
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Abstract. A spectral method which employs trigonometric functions and Chebyshev polynomials is used to
compute the steady, incompressible laminar flow past a circular cylinder. Linear stability methods are used to
formulate a pair of decoupled generalized eigenvalue problems for the growth of symmetric and asymmetric
(about the dividing streamline) perturbations. We show that, while the symmetric disturbances are stable, the
asymmetric perturbations become unstable at a Reynolds number about 40 with a Strouhal number about 0.12.
The critical conditions are found to depend on the size of the computational domain in a manner similar to that
observed in the laboratory.

1. Introduction

It is well known that steady, laminar flow past a circular cylinder becomes unstable at a
Reynolds number Re about 40. The early stages of the instability are observed as wake
oscillations with a Strouhal number S less than about 0.12 (cf. Schlichting [8]). The recent
experiments by Coutanceau and Bouard [2] indicate that the critical value Rec for the onset
of asymmetry (about the dividing streamline) is a strong function of the wall influences
measured by the ratio of the cylinder diameter to that of the tank (). Experiments with A
equal 0.12, 0.07 and 0.024 showed instability at Re, = 43, 39.5 and 36, respectively. This
increase of Rec with reflects the stabilizing influence of the walls.

Computational studies have been largely concerned with the properties of the symmetric,
laminar flow past a half cylinder. This, of course, excludes any asymmetric contribution and
hence a steady state is always possible. Fornberg [3] gives a comprehensive review of the
literature and addresses the problem of the treatment of the outflow boundary conditions.
Finite-difference solutions of the time-dependent equations in the whole plane have been
performed at Re > 100 to study the development of a von Karman vortex street (cf. Jordan
and Fromm [5]). Although solving the initial-value problem can be used to locate the onset
of instabilities, it would be very expensive and does not seem to have been attempted. An
alternative approach to computing the critical conditions is to predict the Hopf bifurcation
point. Winters, Cliffe and Jackson [9] have just accomplished this task through the solution
of an extended set of time-independent equations which they generate by a finite-element
procedure. For their model boundary conditions, in particular at "infinity", they predict Re
and S of 45.403 and 0.13626, respectively.

In this paper we determine the critical conditions by linear stability methods. We first
compute the basic, steady, symmetric flow by a spectral method using trigonometric sine
functions and Chebyshev polynomials as basis functions in the azimuthal and radial direc-
tions, respectively. Then we represent general two-dimensional disturbances in terms of both
sine and cosine functions in the azimuthal direction. Linear stability analysis leads to
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decoupled generalized matrix-eigenvalue problems for the growth of symmetric and asym-
metric disturbances which we solve using standard methods.

We find the symmetric perturbations stable. These disturbances decay monotonically
with a rate that is independent of Re in the range considered. The asymmetric disturbances
become unstable at an Re value that depends on the size of the computational field, where
these disturbances vanish, in a manner similar to that found experimentally by Coutanceau
and Bouard [2]. The values of Rec found range from 39 to 43 and those for S are between
0.11 and 0.13.

2. Mathematical formulation

The nondimensional Navier-Stokes equations are

V v = 0, (la)

2a,v + (v-V)v = -Vp + 2 (ib)

In (1), length, velocity v, time t and pressure p have been assumed dimensionless with respect
to the cylinder radius b, the free-stream velocity U, convective time b/U and dynamic
pressure U2, respectively. The Reynolds number Re, based on the diameter 2b, is
Re = 2bU/v, e and v are the fluid's density and kinematic viscosity, respectively. The motion
is referred to the cylindrical coordinate system (Fig. 1), thus the boundary conditions are

v(1, 0, y, t) = 0, (3a)

v(r, 0, y, t) = v(r, 0 + 2, y, t), (3b)

v(oo, 0, y, t) = (-cos 0, sin 0, 0). (3c)

I

2

Fig. 1. The cylindrical coordinate system (r, 0, y) used. The dividing streamline is lfb2.
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We represent the solenoidal velocity vector field in terms of two scalar functions ~((r, t) and
'T(r, t) (Chandrasekhar [1]) so that the continuity equation (la) is automatically satisfied:

v = V x (ey) + V x (V x Dey), (4a)

= O0T, -, 0 + 2r(D,1 - DO - V2) , (4b)

where V2 is the two-dimensional, polar Laplacian and y is a unit vector in the y direction.
The equations for W and (D are developed by first eliminating the pressure field by taking the
curl of (lb) and using (la),

O,o = V2ac + V x (v x 0), (5)
Re

where the vorticity Co = V x v. The inner product of (5) and curl (5) with ey leads to

a ,V = 2 V2V2 -y V x (v x ), (6a)

a,V2V( = V4V +ey * V x (V x (v x co)). (6b)

In addition to the periodicity conditions (3b), the remaining boundary conditions (3a, c) are
satisfied by requiring

'lJ a = (f = a, = ar( = 0 at r = 1, (7a)

P -r sin 0, - O as r - oo. (7b)

Equations (6-7), along with appropriate initial conditions, are to be solved for T and (.
Two-dimensional solutions are a special case with (D _ 0, in which case T is the usual stream
function of the motion.

3. Two-dimensional motions

Two-dimensional solutions are either steady and symmetric about the dividing streamline
lfJb2 (Fig. 1) or unsteady. All of these solutions are obtained by solving (6a) for TP(r, 0, t)
subject to the boundary conditions (7). With 0, the vorticity has a single nonzero
component

= -V'Tey, (8)

thus (6a) becomes

IV2 = VRe -- 'PaV2 U' + r aIoV2U'. (9)
a~~v:YI~ r
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A Fourier-series representation for v which satisfies the periodicity conditions (3b) is

T(r, 0, t) = Ef (r,t) sin nO + g(r, t) cos n, (10)
n=0 (1 0 ) i

where fn(r, t) and g(r, t) are Fourier (spectral) coefficients to be determined and c = 2,
c = 1 for n > 1. We substitute the expansion (10) in (9) and take the Fourier inner
products ( 02n sin 10 dO and 02 cos 10 dO) to obtain the initial/boundary-value problems for
f and g,:

aDi 2 D2 1 1
atDf = - D f + - E AminQ(fm, f,) - An mQ(g, g,), (1 a)

Re r nm=O n

2 Ia,Dg = - D2g + - Bm,,Q(fm, g) + CnQ(gm,fn), (1lb)
Re r n,m=O

where the following definitions have been introduced for convenience

d2 1 d 12
D/ = - + ( 1c)dr2 r dr r2

Q(fmf,n) = Dmfmafn-fmarDnfn, (1 Id)

Am,, = Jo COS mO sin 10 sin nO dO, (1 le)

BmIn = /2 cos mO cos 10 cos nOdO, (lf)

3/2-m 2n

CmIn = 3 sin mO cos 10 sin nOdO. ( g)

The boundary conditions (7) are satisfied by requiring

f = arf = g = ~rg = 0 at r= 1, (12a)

f - -/r6, g, 0 as r oo, (12b)

where 6,m is the Kronecker delta. Because (1 lb) and the boundary conditions on g1 in (12)
are homogeneous, an initial motion which is symmetric about the dividing streamline, i.e.,
with gl(r, O) = 0, I > 0, will continue to possess this symmetry, i.e., g,(r, t) = 0, t > 0. As
is well known, the experimentally observed motion at sufficiently low Re is symmetric and
steady which implies that initially small values of g,(r, 0) will decrease in time so that the
symmetric flow (given by the spectral components f1(r, t)) is stable. While this may be
asserted by solving the initial/boundary-value problem (11), (12) along with appropriate
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initial conditions, we will demonstrate the stability characteristics of the basic steady flow by
linear stability methods.

3.1. Steady two-dimensionalflow

Here the flow is symmetric about the dividing streamline and gl(r, t) = 0, I > O. Thus the
motion is given by

No 1
T(r, 0) = E f (r) -sin nO, (13)

n=1 7

where

2 NO 1
0 = D 2f + -AminQ(fmfn), (14a)

Re n,m=lr

fl(l) = f'(l) = 0 and f(r - co) - \/-r6,, (14b, c)

along with definitions (1 ic-e), and primes denote differentiation with respect to argument.
In (13) the infinite sum has been truncated to No terms. Solution of the No coupled nonlinear
system (14a, b) has been described in detail (Zebib [10]). Here we only give a brief account
of the solution procedure. The radially infinite computational domain is truncated to the
finite region

r® = ea, for some a. (15)

Because the differential equations forf,(r) are of fourth order we need two conditions for
each f at r,. We cannot impose the asymptotic free-stream condition f(r.) = - r, 6,
as this implies no wake at r. An accurate boundary condition which is easy to implement
(Fornberg [3]) are the soft conditions

Jf = -/6i and f"' = 0, at r = ra. (16)

We can replace f"'(r® ) = 0 byf[(ra) = 0 with no appreciable difference in the computed
results.

Solutions of (14a, b) and (16) are constructed by a spectral method using Chebyshev
polynomials Tj(z), -1 s z < 1. We first introduce the transformation

r = exP[(z + 1)] (17)

so that 1 < r < ea (see (15)) implies -1 < z < 1. Next we develop the Chebyshev expan-
sions for f(z) and its derivatives f,()(z), B = 0, 1, 2, 3, 4,

N,+4-/ N, 3

f?)(z) = E Z G)aiTj(z) + 6, bj)(3z). (18)
j=O i=O j=o
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r

Fig. 2. Variation of the drag coefficient with radial position of control volume. Results for Re = 20, 40 and 100,
a = 3, 3.1 and 3.2 are shown for N = 23 and N = 44. Accuracy to within 4% at Re < 40 is indicated.

Here Nr is the truncation number in the radial (z) direction and a,, are the spectral coefficients
to be computed. The matrices G0,), / = 0, ... , 4 are developed from the recurrence
relations of Tj(z) in such a way that the homogeneous version of the boundary conditions
(14b) and (16) is satisfied, i.e.,

N,r + 4 N, N,+3 N, N,+ N,

E Gj 9°)a,(- lj = E E G,'a,(+ 1)j = y E G()a, = 0, (19)
j=0 i=o j=0 i=0 j=o i=0

while the cubic polynomials with coefficients b5l), /B = 0,. .. , 4 satisfy the nonhomogeneous
boundary conditions (14c) and (16).

The representations (18) are introduced into the boundary-value problem (14a) and the
Chebyshev inner products with Tj(z), i = 0, 1,. . . , N. performed (i.e., we equate coefficients
of Tj(z) in the resulting equations). Thus we have to solve a nonlinear algebraic system of
equations of the form

No N No Nr

i E Lmjamj + B, = E Ntikamjank, = 1, 2,..., No, i = 0, 1, ... , N,
m=l j=O m,n=l j,k=O

(20)

to determine the spectral coefficients a. This we do by Newton's iteration.
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The accuracy of the solutions is a strong function of r, and the truncation parameters N,
and No. As Re increases more Fourier functions are needed to represent the wake and as r.
increases more Chebyshev polynomials are required to resolve the radial direction. Our
numerical experiments showed that sufficiently accurate solutions for Re about 40 or less
may be obtained with No, - 40, Nr - 20 and r, - 20. As the properties of the symmetric
steady states are well documented in the literature, we only show the variation of the drag
coefficient cd with r as computed at different values of Re, r, N and No. We calculate cd by
integrating the momentum equation (1 b) over a cylindrical control volume located at radius
r which yields

Cd {E A,m(2ffg + 4m 2ff, + 2f,, - 2ff,J) + 3f 3
c = 2r ARenm J n eI

(21)

Figure 2 shows the influence of Re and r on the variation of cd with r. We plot results
with (Nr, No) = (22, 44) at a = 3, 3.1 and 3.2 (i.e., ro, - 20.1, 22.2 and 24.5, respectively)
corresponding to Re of 20, 40 and 100. While there is virtually no variation of cd with r at
Re = 20 (cd - 1.99), there is a maximum variation of about 4% at Re = 40 (cd - 1.49).
We include the result for Re = 100 to demonstrate the deterioration of accuracy with
increasing Re, especially close to the cylinder. From Fig. 1, however, we claim accurate
solutions at Re less than or equal to 40.

4. Two-dimensional instability of the steady two-dimensional solutions

Instability of the steady, two-dimensional solutions is determined from linear theory. The
basic motion satisfies (see (13, 14))

1
I(r, ) = E f(r) sin nO, (22)

n=i a

2 No 1
0 -D 2f + E - AmnQ(fm, ). (23)

Re n,m=l r

We consider a general infinitesimal two-dimensional disturbance given by a stream
function '(r, 0, t) of the form (10),

N6 1 1
T'(r, 0, t) = fJ'(r, t)- sin nO + g(r, t) cos nO, (24)

n=O 0 ,I 

where the number of azimuthal modes No' required for accurate computation of T' need not
be equal to No and is found by carrying out numerical experiments. We now substitute
T' + ' for T' in (9), and after linearization we derive the equations for the Fourier
components, 0 < I < No,

2 1 N No
aD,f' = - D12f + - 5Z AmnQ(f, f.) + AnmQ(f, fm), (25)

Re r n=l m=l
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2 N No
a,Dg; = R Di g ; + - EZ BmlnQ(fm, g') + Cn,,Q(g , f). (26)

' -Re r n=O m=l

From (25) and (26) it is evident that growth or decay of symmetric and asymmetric
perturbations (i.e.,f/' and g/, respectively) are determined from decoupled equations and can
be evaluated separately.

4.1. Symmetric disturbances

The boundary conditions onf'(r, t) follow from (12a) and (16); thus we require

ff = rf/' = 0 at r = 1, (27a)

a ff = f/' = 0 at r = ea, (27b)

so that f' has the representation (see (18), (19))

/v/+4- N;

1f'(r, t) = GB'ai(t) Tj(z), (28)
j=o i=o

where the truncation Nr' need not equal to Nr.
The initial-value problem for ai(t) is derived by substituting (28) in (25) and performing

the Chebyshev inner product with basis functions Oi(z), 0 < i < N', which yields

N6 N, Nb N;'

B,imj.,a' = E E Aimam. (29)
m=l j=O m= I j=O

The choice of the basis function Xi(z) is important. If we use the obvious basis, T(z), the
resulting eigenvalue problem is found to have a number of spurious eigenmodes equal to No.
This situation is found in other stability problems described by the Orr-Sommerfeld equations
(Gottlieb and Orszag [4], Zebib [10]). A remedy for these spurious roots has been described
in Zebib [11]. We simply chose for qi(z) a basis which satisfies all of the homogeneous
boundary conditions satisfied by the perturbations. Thus we take

Nr+4

4e(a) = E G(°)T(z), (30)
j=0

which satisfies (27). The solution of (29) is found in the usual way by letting

a = e(a +is) Cm (31)

in (29) and solving the resulting generalized eigenvalue problem by standard library sub-
routines. It should be noted that the factor 7r in the exponent of (31) is used so that S is the
Strouhal number based on the diameter (recall that the length scale in (1) is the radius).

We found that the symmetric disturbances are stable as expected. The eigenmode with
slowest decay is monotonic (S = 0) with a - 0.01 for Re less than 60. This results from
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computations with N,, No and Nr', N. up to (22, 44) and (14, 40), respectively, at the r value
of Fig. 1.

4.2. Asymmetric disturbances

Here we insist that asymmetric perturbations decay to zero at r. This is so to ensure
symmetric inflow at r. Thus the proper boundary conditions on g/(r, t), according to (12)
are

g = arg = 0 at r = 1 and r. (32)

We now construct a representation for g[(r, t) in terms of T(z) in a manner similar to that
leading to (28),

N'+4- Nr'

ao!g/(r, t) = E E 5(Pb',(t) Tj(z), (33)
j=o i=o

with Fi), = 0, . . . , 3, developed so that the boundary conditions in (32) are identically
satisfied. The algebraic eigenvalue problem is derived in a manner similar to that leading to
(29). Here, however, the basis functions qi(z) (see (30)) are

N;+4

Oi(Z) = E F)T(z), (34)
j=o

so that Xi(z) satisfy all of the homogeneous conditions in (32). The generalized eigenvalue
problem is then derived by letting

be'(t) = e( a
+is)t d, (35)

for 0 < I < N and 0 < i < N'.
The results of the computations are shown in Fig. 3, where we plot a and S for the fastest

growing mode as a function of Re corresponding to the r values of Fig. 1. The computa-
tions are with (N,, No) and (N', N) at (22, 44) and (14, 30), respectively. The accuracy of
these results have been confirmed by performing computations at lower truncations. Figure
3 shows the variation of a and S with Re at fixed r,. At the lowest values of Re, about 10,
the least stable mode has an S about 0.06. With increasing Re the eigenmode with S about
0.1 becomes the least stable, i.e., its a increases and dominates the a associated with other
eigenmodes). This mode switching occurs at Re about 25, depending on the value of r,. The
second mode switching, with S = 0.13, takes place where the flow becomes unstable at Rec
in the range 39-43. The flow is unstable for Re > 45.

It is also evident from Fig. 3 that the smaller the value of r where the asymmetric
disturbances vanish (in fact satisfy the no-slip conditions (32)) the more stable is the flow and
the higher is the value of Rec. This is consistent with the experimental results of Coutanceau
and Bouard [2]. In addition, the increase of S with Re, which we find due to exchange of
eigenmodes, is in qualitative agreement with observations (cf. Schlichting [8]).
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5. Concluding remarks

We have carried out a linear stability analysis of the steady flow past a circular cylinder. The
basic flow is two-dimensional and the disturbances are also two-dimensional but include
asymmetric contributions. The theoretically obtained results are shown to be in good
agreement with experiments.

There is a need for successful theoretical prediction of the three-dimensional instabilities
which form near the frontal stagnation point of the cylinder. Existing theoretical studies have
so far been concerned with the Hiemenz solution as the basic flow (cf. Lyell and Huerre [6]).
Our mathematical formulation in equations (1) to (6) is general and allows for stability
analysis of three-dimensional perturbations with nonzero but small. However, we need to
be able to compute accurate steady, symmetric flow at Re - 1000. We have shown that a
spectral representation with about 1000 spectral coefficients is needed to accurately describe
the flow at Re 40. This solution is obtained in about 1.5 minutes on a CYBER 205.
However, because the Jacobian of (20) is full, we did need one million 64 bit words of
memory. Thus, in order that we may proceed further, we must develop a method following
the ideas of Orszag [7] to construct a sparse approximate Jacobian to (20). This is currently
in progress.
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